Prion-like Mechanism in Amyotrophic Lateral Sclerosis: are Protein Aggregates the Key?

نویسندگان

  • Shynrye Lee
  • Hyung-Jun Kim
چکیده

ALS is a fatal adult-onset motor neuron disease. Motor neurons in the cortex, brain stem and spinal cord gradually degenerate in ALS patients, and most ALS patients die within 3~5 years of disease onset due to respiratory failure. The major pathological hallmark of ALS is abnormal accumulation of protein inclusions containing TDP-43, FUS or SOD1 protein. Moreover, the focality of clinical onset and regional spreading of neurodegeneration are typical features of ALS. These clinical data indicate that neurodegeneration in ALS is an orderly propagating process, which seems to share the signature of a seeded self-propagation with pathogenic prion proteins. In vitro and cell line experimental evidence suggests that SOD1, TDP-43 and FUS form insoluble fibrillar aggregates. Notably, these protein fibrillar aggregates can act as seeds to trigger the aggregation of native counterparts. Collectively, a self-propagation mechanism similar to prion replication and spreading may underlie the pathology of ALS. In this review, we will briefly summarize recent evidence to support the prion-like properties of major ALS-associated proteins and discuss the possible therapeutic strategies for ALS based on a prion-like mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

A prion-like mechanism for the propagated misfolding of SOD1 from in silico modeling of solvated near-native conformers

A prion-like mechanism has been developed to explain the observed promotion of amyloid aggregation caused by conversion of structurally intact SOD1 to a misfolded form. Superoxide dismutase [Cu-Zn], or SOD1, is a homo-dimeric protein that functions as an antioxidant by scavenging for superoxide. The misfolding and aggregation of SOD1 is linked to inherited, or familial, amyotrophic lateral scle...

متن کامل

Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans.

Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional...

متن کامل

Protein aggregates stimulate macropinocytosis facilitating their propagation.

Temporal and spatial patterns of pathological changes such as loss of neurons and presence of pathological protein aggregates are characteristic of neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Frontotemporal Dementia, Alzheimer's disease and Parkinson's disease. These patterns are consistent with the propagation of protein misfolding and aggregation reminiscent of the prion...

متن کامل

Profilin 1 mutants form aggregates that induce accumulation of prion-like TDP-43

Mutations in the profilin 1 (PFN1) gene have been identified as a cause of familial amyotrophic lateral sclerosis (ALS), and neuropathological studies indicate that TDP-43 is accumulated in brains of patients with PFN1 mutation. Here, we investigated the role of PFN1 mutations in the formation of prion-like abnormal TDP-43. Expression of PFN1 with pathogenic mutations resulted in the formation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015